Martian Moons—short note


About two years ago, the Russian republic launched an ambitious probe that never achieved its stated goal—landing on the Martian moon, Phobos. The general public may not readily recall mission, but if it had succeeded it would have brought to Earth a treasure trove of data and materials. As I recall the ballyhooed launch, it was an unfortunate loss and posed a potential environmental hazard (as portrayed by some in the media). The probe eventually fell back to Earth—here is the NYTimes article: Russia’s Failed Mars Probe Crashes Into Pacific .

According to the NASA website: (Phobos-Grund)

“The plan for the mission if it had made it to Mars is as follows: It will orbit Mars for a few months and touch down on Phobos in February 2013. Sample assessment and collection will take place over the next 2 to 7 days. It will collect 15 to 20 separate samples. After the samples have been collected, the springs will propel the return stage away from the lander and the rockets provide the 35 km/hr velocity needed to escape Phobos’ gravity. After the necessary maneuvers, the return capsule should arrive at Earth in August of 2014. The lander experiments will continue to operate on the surface for a year.”

Image of the Phobos-Grund spacecraft

[USA.gov] –URL source http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2011-065A

Martian moons

The moons of Mars bear the potential imprint of past ejecta; SNC meteorites (e.g. Alan Hills meteorite) are found on the Moon and the Earth–and possibly on Phobos (or Deimos) as well.

Although there are many uncertainties, it has been suggested that the ejecta (Martian meteors) may contain evidence of past life (and the potential for panspermia). The topic of panspermia is controversial in many “quarters” of mainstream science–it has not been completely disproved.


Advertisements

3 thoughts on “Martian Moons—short note

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s